Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Elektronen-Wettrennen im Kristallgitter

Die kürzeste Sprintstrecke der Welt: Mit Laserpulsen lässt sich die Bewegung von Elektronen in Metall nun mit Attosekunden-Präzision untersuchen. Damit kann man elektronische Effekte verstehen – und vielleicht auch verbessern.




Abbildung: Ein Laserstrahl dringt in eine Struktur ein, die aus zwei verschiedenen Metallen besteht. In beiden Metallen können Elektronen aus ihrem Platz gelöst werden und sich nach außen (oben) bewegen. [Bildquelle: TU Wien]
Elektronen-Wettrennen

Abbildung: Ein Laserpuls (rot) und ein extrem-ultravioletter (XUV) Attosekundenpuls (violett, 1 as = 10 18 s) treffen auf eine Oberfläche aus Schichten von Magnesiumatomen (dunkelblau). Darunter befindet sich ein Kristallgitter aus Wolfram (grün). Der XUV-Puls schlägt aus den Wolframatomen Elektronen heraus. Mit dem Laserpuls können die Physiker anschließend messen, wie lange die Wolframelektronen benötigen, um die Magnesiumschichten zu durchdringen. [Bildquelle, Graphik: Christian Hackenberger]
Magnesium-Schicht

Elektrischen Strom zu messen ist einfach. Die einzelnen Elektronen zu beobachten, aus denen dieser Strom besteht, ist allerdings äußerst schwierig. Mit einer Geschwindigkeit von mehreren Millionen Metern pro Sekunde rasen die Elektronen durch das Material, und die Distanzen, die sie zwischen zwei benachbarten Atomen zurückzulegen haben, sind äußerst kurz. Dementsprechend muss man winzige Zeitintervalle auflösen können, um den Sprint der Elektronen durchs Material zu studieren.

Durch Messungen in Garching (Deutschland) und theoretische Berechnungen der TU Wien ist das nun gelungen. Wie sich zeigt, unterscheidet sich die Bewegung der Elektronen in einem Metall gar nicht besonders stark von der ballistischen Bewegung im freien Raum. Veröffentlicht wurden die Ergebnisse nun im Journal 'Nature' [siehe Literatur-Hinweis unten].

 

Die winzigen Zeitskalen der Quantenwelt

Der so genannte 'photoelektrische Effekt' wurde bereits 1905 von Albert Einstein erklärt: Licht überträgt Energie auf ein Elektron, das dabei aus dem Material herausgelöst wird. Das geschieht so schnell, dass es lange Zeit völlig unmöglich erschien, den zeitlichen Ablauf dieses Effektes zu untersuchen. In den letzten Jahren hat sich allerdings das Forschungsgebiet der Attosekundenphysik deutlich weiterentwickelt, sodass man heute solche quantenphysikalischen Prozesse tatsächlich zeitaufgelöst analysieren kann.

Eine Attosekunde ist ein Milliardstel einer Milliardstelsekunde (10-18 Sekunden). So lange braucht das Licht ungefähr, um in einem Metall den Weg von einem Atom zum nächsten zurückzulegen. Mit Hilfe ultrakurzer Laserpulse kann man heute Messgenauigkeiten in Attosekunden-Größenordnung erreichen.

Die nun veröffentlichten Daten wurden am Max-Planck-Institut für Quantenoptik in Garching gemessen. Am Experiment beteiligt waren auch die TU München, das Fritz-Haber-Institut in Berlin, das Max-Planck-Institut für die Struktur und Dynamik der Materie in Hamburg und die LMU München. An der TU Wien wurden dazu die theoretische Modelle und Computersimulationen entwickelt, um die experimentellen Ergebnisse präzise interpretieren zu können.

 

Wettlauf der Elektronen

"Im Experiment untersucht man ein Wettrennen der Elektronen", erklärt Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien. Zwei verschiedene Metalle - Wolfram und Magnesium - werden aufeinandergestapelt und mit einem Laserpuls beschossen. Das Laserlicht kann nun entweder außen im Magnesium oder darunter im Wolfram Elektronen herauslösen, die dann nach kurzer Zeit den Weg an die Oberfläche finden. Nicht mal einen Nanometer legen die Elektronen dabei normalerweise zurück, und trotzdem kann man messen, mit welchem Vorsprung die Elektronen aus dem Magnesium vor den Elektronen aus der Wolfram-Schicht an der Oberfläche ankommen.

Die Länge der Elektronen-Sprintstrecke kann variiert werden: Zwischen einer und fünf Atomlagen Magnesium wurde auf das Wolfram aufgedampft. "Je dicker die Magnesium-Schicht ist, umso größer ist der mittlere zeitliche Vorsprung der Elektronen, die dort herausgelöst werden, gegenüber den Elektronen aus der Wolfram-Schicht", sagt Christoph Lemell (TU Wien). Der einfache Zusammenhang zwischen Schichtdicke und Ankunftszeit zeigt, dass sich die Elektronen recht ungestört und geradlinig ("ballistisch") durch das Metall bewegen und es nicht zu komplexeren Stoßprozessen kommt.

 

Scharf gezogene Ziellinie

Entscheidend für die Zeitmessung beim Elektronen-Sprint ist eine wohldefinierte Ziellinie. Dafür wurde im Experiment ein weiterer Laserpuls auf die Metall-Oberfläche geschossen - und zwar so, dass er die aus dem Metall austretenden Elektronen beeinflusst, aber nicht ins Innere des Metalls eindringt. "Innerhalb eines Bereichs der kürzer ist als der Abstand zwischen zwei Metall-Atomen ändert sich die Intensität dieses Laserfeldes ganz extrem", erklärt Georg Wachter (TU Wien). Schon in der äußersten atomaren Schicht des Metalls wird das Feld praktisch auf null reduziert, unmittelbar oberhalb der Metalloberfläche hingegen geraten die austretenden Elektronen sofort in ein starkes Laserfeld. Erst durch die Schärfe dieses Übergangs wird die präzise Messung möglich.

Die neuen Erkenntnisse sollen bei der weiteren Miniaturisierung von elektronischen und photonischen Bauteilen helfen - und sie sind ein weiterer Beweis für die erstaunlichen Möglichkeiten der Attosekundenphysik, durch deren Techniken atomare Phänomene immer besser studiert werden können. "Dieser Forschungsbereich könnte ganz neue Türen öffnen, neue Methoden für die Quantentechnologie liefern und uns helfen, grundlegende Fragen der Materialwissenschaft und Elektronik zu verstehen", sagt Joachim Burgdörfer.

 

 

Pressemitteilung des Max-Planck-Instituts für Quantenoptik

Rasante Reise durchs Kristallgitter

Forscher der TU-München und des Max-Planck-Instituts für Quantenoptik messen, wie lang Elektronen benötigen um einzelne Lagen aus Atomen zu durchqueren.

Wie schnell flitzen Elektronen durch die Atomlagen eines Kristallgitters? Dieser Frage ging ein internationales Wissenschaftlerteam unter Führung von Forschern der Technischen Universität München (TUM), in Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching, der Ludwig-Maximilians-Universität München und der Technischen Universität Wien nach. Die Forscher bestimmten die Zeit, die Elektronen benötigen, um einen Film aus nur wenigen Lagen von Magnesiumatomen zu durchqueren.

Fast unvorstellbar kurz sind die Zeitdimensionen, in denen sich Elektronen innerhalb von Atomen bewegen. Werden sie etwa durch Licht angeregt, dann ändern sie ihren quantenmechanischen "Aufenthaltsort" in nur Attosekunden-langen Zeitspannen. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde.

Doch wie schnell flitzen Elektronen über Distanzen, die der Dicke einzelner Atomlagen entsprechen? Solche Distanzen sind wenige Milliardstel Meter lang. Diesen Laufzeiten der Elektronen ist nun ein internationales Forscherteam um Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der Technischen Universität München und Forschungsgruppenleiter am Max-Planck-Institut für Quantenoptik nachgegangen.

Dazu brachten die Physiker auf einen Wolframkristall eine definierte Anzahl von Lagen aus Magnesiumatomen auf. Auf diese Proben schickten die Forscher zwei Lichtpulse. Der erste Lichtpuls dauerte rund 450 Attosekunden, bei Frequenzen im extremen Ultraviolett. Dieser Lichtblitz drang in das Material ein und löste sowohl aus den Magnesiumatomlagen als auch aus dem darunter liegenden Wolframkristall je ein sehr nahe am Atomkern gelegenes Elektron heraus.

Das "Wolfram-Elektron" und das "Magnesium-Elektron" bewegten sich nach ihrer Freisetzung durch den Kristall bis an dessen Oberfläche, an der sie den Festkörper verließen. (Elektronen aus dem Wolframkristall konnten maximal vier Lagen von Magnesiumatomen durchdringen.) Dort wurden die Teilchen vom elektrischen Feld des zweiten Lichtpulses erfasst, einem infraroten Wellenzug mit einer Dauer von weniger als fünf Femtosekunden.

Da das "Wolfram-Elektron" und das "Magnesium-Elektron" aufgrund unterschiedlich langer Wege auch zu unterschiedlichen Zeiten an der Oberfläche ankamen, spürten sie den zweiten, infraroten Lichtpuls zu verschiedenen Zeiten, d.h. sie erfuhren unterschiedliche Stärken des oszillierenden elektrischen Feldes. Demzufolge wurden beide Teilchen auch unterschiedlich stark beschleunigt. Aus den daraus resultierenden Energieunterschieden der Elektronen konnten die Forscher ermitteln, wie lange ein Elektron benötigte, um eine Lage von Atomen zu durchqueren.

Die Messungen ergaben, dass ein "Wolfram-Elektron" beim Durchqueren einer Lage von Magnesiumatomen um rund 40 Attosekunden verzögert wird, also genau diese Zeit für den Gang durch diese Schicht benötigt.

Die Experimente geben Aufschluss darüber, wie Elektronen sich in der weitgehend unerforschten Welt des Mikrokosmos bewegen. Das Wissen, wie schnell sich ein Elektron von einem Ort zum anderen bewegt, ist für viele Anwendungen von großer Bedeutung: "Während sich beispielsweise in heutigen Transistoren eine Vielzahl von Elektronen über immer noch große Strecken bewegt, könnten in Zukunft einzelne Elektronen ein Signal über Nanostrukturen übermitteln", sagt Prof. Reinhard Kienberger. "Dadurch könnten elektronische Geräte, z.B. auch Computer, um ein Vielfaches schneller und kleiner werden."

Gefördert wurden die Arbeiten aus Mitteln der Deutschen Forschungs Gemeinschaft (SFB 51, SFB 49, Exzellenzcluster Munich-Centre of Advanced Photonics), der Max-Planck-Research School of Advanced Photon Science, des Österreichischen Wissenschaftsfonds (FWF) und des European Research Council (ERC).

[Thorsten Naeser]


Zusatzinformationen:

S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter, E. Magerl, E. M. Bothschafter, M. Jobst, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, J. Burgdörfer, P. Feulner, F. Krausz und R. Kienberger:
Direct observation of electron propagation and dielectric screening on the atomic length scale.
In: Nature; 517, 342–346, online veröffentlicht am 14. Januar 2015, DOI 10.1038/nature14094

Quelle: Technische Universität Wien, Österreich
Max-Planck-Institut für Quantenoptik, Garching

 


Aktualisiert am 15.01.2015.



© 1996 - 2024 Internetchemie ChemLin














Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren