[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]


Home


Weitere Infos:

Materialchemie



Aktuelles

Mehr Chemie Nachrichten

Neueste Forschungsartikel

Stellenmarkt Chemie


Chemie A bis Z

Index Chemie

Chemikalien

Internetchemie Lexikon

Produkte und Firmen


About Internetchemie

Internetchemie

Impressum


English News



 

Publiziert am 17.08.2007 Infos zum Internetchemie RSS News Feed

Stuttgarter Physiker entschlüsseln das Geheimnis des Glasübergangs


 
Auf dem Weg zu neuen Hochleistungsmaterialien.

Forscher der Universität Stuttgart sind hinter das Geheimnis des Glasübergangs gekommen, eine wichtige Voraussetzung für die Weiterentwicklung neuer Hochleistungsmaterialien.

Gläser sind Festkörper, in denen der flüssige Zustand eingefroren ist. Im Gegensatz zu kristallinen Festkörpern besitzen Gläser keine geordnete atomare Struktur sondern sind amorph (gr.: strukturlos). Wissenschaftlern am Institut für Theoretische und Angewandte Physik der Universität Stuttgart um Prof. Hans-Eckhardt Schaefer ist es nun gelungen, einen wichtigen Beitrag zur Aufklärung der Mechanismen des Glasübergangs in amorphen Metallen zu leisten, bei dem der Festkörper vom amorphen Zustand in den Zustand der unterkühlten Schmelze übergeht.

Eine immer größer werdende Klasse von Metallen lässt sich in den amorphen Zustand bringen. Diese nichtkristallinen, ungeordneten Strukturen weisen außergewöhnliche mechanische und magnetische Eigenschaften sowie hohe Korrosionsbeständigkeit auf. Wegen der amorphen Struktur werden diese metallischen Materialien auch metallische Gläser genannt. Der so genannte Glasübergang in diesen Festkörpern ist nun von enormer Bedeutung für die Eigenschaften dieser Materialien, die beispielsweise in der Medizintechnik, modernen Sportgeräten, oder aber auch als Hochleistungsstähle der Zukunft Anwendung finden. Der Glasübergang, bei dem sich die mechanischen Materialeigenschaften rapide mit der Temperatur ändern, ist nach den neuen Untersuchungen signifikant durch die Einführung freier atomarer Plätze (Leerstellen) bei höheren Temperaturen bestimmt, die bei Absenkung der Temperatur wieder verschwinden. Diese neuartigen Erkenntnisse konnten durch hochpräzise Messungen der Materialabmessungen bis in den Nanometerbereich gewonnen werden. Dazu kam die Methode der zeit-differenziellen Dilatometrie (zeitabhängige Ausdehnungsmessung bei konstanter Temperatur nach schnellen Temperaturwechseln), die in der Gruppe von Prof. Schaefer entwickelt wurde, zum Einsatz. Die Ergebnisse sind ein wichtiger Schritt für das Verständnis amorpher Materialien wie Quarzglas, Polymere oder biologische Eiweissmaterialien und sind von herausragender Bedeutung für die Festkörper- und Materialphysik.

Die Arbeit, die jetzt in der renommierten amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS, Bd 104 (2007) S. 12962) veröffentlicht wurde, entstand in Zusammenarbeit mit Kollegen der University of Science and Technology, Beijing (China), der Technischen Universität Graz und der Universität Ulm und wurde von der Max-Planck-Gesellschaft gefördert.


 

Quellen und Artikel:

-

Feng Ye, Wolfgang Sprengel, Rainer K. Wunderlich, Hans-Jörg Fecht, and Hans-Eckhardt Schaefer - From the Cover: Reversible atomic processes as basic mechanisms of the glass transition - PNAS 2007 104: 12962-12965; published online before print July 30 2007, DOI: 10.1073/pnas.0705221104

-

Institut für Theoretische und Angewandte Physik der Universität Stuttgart

 

Weitere Informationen:

-

... zum Thema (Hintergrundinformationen, Forschungsartikel etc.): Siehe Menüleiste oben links

-

Ihre Pressemitteilung veröffentlichen ...




 


Suche nach themenverwandten Internetseiten:


Information nicht gefunden?
Versuchen Sie es hier!


Benutzerdefinierte Suche


Internetchemie © 2007 - 2009 A. J.; aktualisiert am 29.09.2009