[ Sitemap ] [ Contact ] [ Imprint ] [ News in German ]   


Home



Related Topics:

Aromatic Compounds


Current News

- Chemistry News

- Current Research Articles

- Job Market

- Chemistry Conferences


Chemistry A to Z

- Chemistry Index

- Chemicals

- Products and Companies


About Internetchemistry

- Internetchemistry

- Imprint


News in German News in German



Published: 23.06.2008 Get Internetchemistry RSS News Feed

Researchers confirm benzene-like electron delocalization of important molecule


 
UO team's findings could pave way for synthetic compounds useful in drug discovery and materials science.

Researchers in the lab of University of Oregon chemist Shih-Yuan Liu have successfully synthesized and structurally characterized boron-nitrogen compounds that are isoelectronic and isostructural to the fundamentally important benzene molecule. Given the appearance of benzene derivatives in biomedical research and materials science, the boron-nitrogen substituted analogues could potentially play a pivotal role in these areas.

In the Journal of the American Chemical Society, Liu's team reports that, by using a structural approach, benzene surrogates known as 1,2-dihydro-1,2-azaborines possess electron-delocalized structures consistent with aromaticity - a core concept in chemistry. The paper already has drawn praise by other researchers in a story in Chemical & Engineering News.

Shih-Yuan Liu shows a graphic depicting the findings from his University of Oregon laboratory.

Photo by Jim Barlow

The bottom line is that we have synthesized reference compounds designed to be non-aromatic, and through the comparisons of the aromatic molecule with the reference compounds, we were able to unambiguously say that this compound is really electron delocalized in a way consistent with aromaticity," Liu said. "With the results of other research in this field, our findings present a very strong case that 1,2-dihydro-1,2-azaborines are indeed aromatic."

Liu is among molecule-making chemists who are interested in manipulating heterocycles -- ring-like structures that contain various elements in addition to carbon. Aromatic heterocycles play a big role in pharmaceuticals, Liu said, noting that eight of the top ten selling molecules on the market today contain aromatic compounds.

For biomedical purposes, Liu said, boron-containing molecules disguised with other components readily accepted by living tissues could conceivably be used as markers to track the location of the drug. Eventually, he said, targeted drug therapies might deliver very specific tumor-destroying action that leaves healthy cells untouched.

"Our objective is really to first develop the synthetic chemistry of these boron-nitrogen heterocycles, make it accessible to other chemists to study, and ultimately go into applied research to create opportunities in cancer therapies and materials sciences," Liu said. "I believe that we have made substantial progress for expanding the scope of accessible molecules such as this. The methods we have developed here at the University of Oregon are beginning to be quite useful."

Co-authors on the paper were lead author Eric R. Abbey, a doctoral student, and Lev N. Zakharov, director of the X-Ray Diffraction Lab in the UO's Center for Advanced Materials Characterization in Oregon (CAMCOR). The research was funded in part by the National Science Foundation.

 

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.



 

Further Information and Source:

-

Eric R. Abbey, Lev N. Zakharov,* and Shih-Yuan Liu:
Crystal Clear Structural Evidence for Electron Delocalization in 1,2-Dihydro-1,2-azaborines.
In: Journal of the American Chemical Society; J. Am. Chem. Soc., 130 (23), 7250–7252, 2008; DOI: 10.1021/ja8024966

-

Shih-Yuan Liu's faculty page

-

CAMCOR Web site

-

College of Arts and Sciences

-

Source: University of Oregon

 

Related Articles:

-

Boron-based compounds trick a biomedical protein: University of Oregon chemists, biologists team to boost boron's expanding use in medicine. (Sep. 2009)

 

Related Information:

 

Publish your Press Release


Related topics - search form:


Google


 

Internetchemistry © 2007 - 2008 A. J. - last update 23.06.2008