Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Biochemischer Frostschutz

Warum Fische im Eismeer nicht einfrieren: Anti-Frost-Protein beeinflusst die Bewegung umgebender Wassermoleküle.




Abbildung unten: Der Fisch Macropteris maculatus aus dem McMurdo-Sund in der Antarktis. Das Anti-Freeze-Protein - oben die schematische Struktur mit der erweiterten Hydrathülle - verhindert, dass er im Eismeer gefriert. [Bildquelle: RUB]
Macropteris maculatus

Bochumer Forscher haben herausgefunden, wie der natürliche Frostschutz funktioniert, der Fische im Eismeer vor dem Erfrieren schützt. Sie konnten beobachten, dass ein Gefrierschutzprotein im Fischblut die Wassermoleküle in seiner Umgebung so verändert, dass ein Ausfrieren unmöglich wird und das Ganze flüssig bleibt. Dabei besteht zwischen Protein und Wasser keine chemische Bindung - die Anwesenheit des Proteins genügt.

Gemeinsam mit Kooperationspartnern aus den USA beschreiben die Forscher um Prof. Dr. Martina Havenith-Newen (Physikalische Chemie II der RUB) ihre Entdeckung in einer sog. Rapid Communication in der renommiertesten amerikanischen Chemiezeitschrift, dem Journal of the American Chemical Society (siehe unten).

Die unabhängigen Gutachter des Journals werteten die Arbeit als eine der besten 5% aller Einsendungen.

 

Besser als haushaltsübliche Frostschutzmittel

Bei Temperaturen von minus 1,8° C müsste eigentlich jeder Fisch erstarren: Der Gefrierpunkt für Fischblut liegt bei ungefähr minus 0,9° C. Warum antarktische Fische bei diesen Temperaturen trotzdem beweglich bleiben, interessiert die Forschung seit langem. Schon vor 50 Jahren wurden besondere Gefrierschutzproteine im Blut dieser Fische entdeckt. Diese sog. Anti-Freeze-Proteine funktionieren besser als jedes haushaltsübliche Frostschutzmittel. Wie sie aber funktionieren, war bislang noch ungeklärt. Die Bochumer Forscher setzten ihre Spezialität ein, die Terahertz-Spektroskopie. Mit Hilfe von Terahertz-Strahlung lassen sich die kollektiven Bewegungen von Wassermolekülen und Proteinen beobachten. So konnte die Arbeitsgruppe schon zeigen, dass Wassermoleküle, die in flüssigem Wasser normalerweise einen ständigen Tanz aufführen und dabei immer neue Bindungen untereinander eingehen, in Anwesenheit von Proteinen geordneter tanzen - "aus dem Discotanz wird ein Menuett", schildert Prof. Havenith-Newen.

 

Mitbringsel einer Antarktis-Expedition

Gegenstand der aktuellen Untersuchungen waren Anti-Freeze-Glycoproteine des antarktischen Seehechts Dissostichus mawsoni, den einer der amerikanischen Kooperationspartner, Arthur L Devries, eigens auf einer Antarktis-Expedition gefischt hatte. "Wir konnten sehen, dass das Protein einen besonders weitreichenden Einfluss auf die Wassermoleküle in seiner Umgebung hat, wir sprechen von einer erweiterten Hydrathülle", erklärt Mitautor Konrad Meister. "Dieser Einfluss, der die Eiskristallisation verhindert, ist bei tiefen Temperaturen sogar ausgeprägter als bei Zimmertemperatur", setzt Prof. Havenith-Newen hinzu. Um das Wasser dennoch zum Gefrieren zu bringen, wären tiefere Temperaturen nötig. Wenn man das Protein durch einen speziellen Boratpuffer deaktiviert, funktioniert der Gefrierschutz nicht mehr. In diesem Fall fanden die Forscher auch keine Änderung des Terahertz-Tanzes. Mit ihrer Beobachtung entkräfteten die Forscher die bisherige Annahme, dass eine einzige Bindungsstelle zwischen Anti-Freeze-Protein und Wasser für die Aktivität des Proteins verantwortlich ist. Mit der Untersuchung gelang zum ersten Mal der Nachweis eines direkten Zusammenhangs zwischen der Funktion eines Proteins und seiner Signatur im Terahertz-Bereich. Die Untersuchungen wurden von der VolkswagenStiftung gefördert.


Zusatzinformationen:

Simon Ebbinghaus, Konrad Meister, Benjamin Born, Arthur L. DeVries, Martin Gruebele, Martina Havenith:
Antifreeze Glycoprotein Activity Correlates with Long-Range Protein-Water Dynamics.
In: Journal of the American Chemical Society; online veröffentlicht am 16. August 2010, DOI 10.1021/ja1051632

Quelle: Ruhr-Universität Bochum, RUB

 


Aktualisiert am 23.08.2010.



© 1996 - 2024 Internetchemie ChemLin










Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren