Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Kugelförmiges Magnesium-Atom nachgewiesen

Verkehrte Welt auf der Insel der Inversion: Erster Nachweis eines sphärischen Magnesium-32-Kerns.




Abbildung 1: Der Krebsnebel, Überrest einer gigantischen Supernova. Eine neue Entdeckung und dadurch aufgeworfene Fragen könnten bei der Erklärung helfen, wie die chemischen Elemente in Sternexplosionen synthetisiert werden. [Bildquelle: ESO]
Krebsnebel

Abbildung 2: Mit dem Miniball-Detektor analysierten die Wissenschaftler das Gammastrahlenspektrum der 32-MG-Kerne. Die Kerne werden im Radioactive Beam Experiment (REX) erzeugt und im Separator ISOLDE (Isotope-Separator On-Line) selektiert, so dass im resultierenden Strahl ausschließlich ein Isotop vorkommt. [Bildquelle: Maximilien Brice / CERN]
Miniball-Detektor am REX-ISOLDE-Experiment des CERN

Elemente, die schwerer sind als Eisen, bilden sich nur in gewaltigen Sternexplosionen, sogenannten Supernovae. Durch Kernreaktionen entstehen hierbei jede Menge hochangeregte kurzlebige Atomkerne, inmitten derer die Theorie stabilere Zusammensetzungen voraussagt, die magischen Zahlen. Doch auch hier gibt es Ausnahmen, die Inseln der Inversion. Unter der Führung von Physikern des Exzellenzclusters Universe an der Technischen Universität München (TUM) hat sich ein internationales Forscherteam die zuerst entdeckte dieser Inseln genauer angesehen. Ihre Resultate veröffentlichten sie in Physical Review Letters [siehe unten].

Alle chemischen Elemente, die wir auf der Erde kennen, stammen aus dem Weltall. Die häufigsten Elemente im Universum, Wasserstoff und Helium, bildeten sich bereits kurz nach dem Urknall. Andere Elemente wie Kohlenstoff oder Sauerstoff entstehen erst später durch die Fusion von Atomkernen im Inneren von Sternen. Elemente, die schwerer sind als Eisen verdanken ihre Existenz gigantischen Sternexplosionen, auch Supernovae genannt. Dazu zählen beispielsweise die Edelmetalle Gold und Silber oder das radioaktive Uran.

In der Hexenküche einer Supernova entstehen eine Vielzahl massereicher Atomkerne, die über verschiede kurzlebige Zwischenstadien zu stabilen Elementen zerfallen. Analog zum Schalenmodell der Elektronen haben die Kernphysiker ein Modell entwickelt, das für bestimmte Neutronen- und Protonenzahlen eine besondere Stabilität voraussagt. Dies sind die "magischen Zahlen". Bei ihnen ist eine Schale voll besetzt, der Kern nahe an der idealen Kugelform.

Doch es gibt auch "magische" Atomkerne, die von der erwarteten Schalenstruktur abweichen. Ein internationales Forscherteam unter der Führung von Physikern des Exzellenzclusters Universe an der TU München hat sich Kerne in einem Bereich mit der magischen Neutronenzahl 20, der "Insel der Inversion" genannt wird, genauer angesehen. Messungen am Instrument REX-ISOLDE, einem Beschleuniger für radioaktive Ionenstrahlen am CERN, führten dabei zu überraschenden Resultaten.

In ihrem Experiment untersuchten die Wissenschaftler das neutronenreiche Isotop Magnesium-32, indem sie einen Magnesium-30-Strahl auf eine Titanfolie schossen, die mit Tritium, schwerem Wasserstoff, beladen war. In einer so genannten Paartransferreaktion wurden zwei Neutronen vom Tritium abgestreift und auf den Magnesium-Kern übertragen, der sich damit in Magnesium-32 umwandelte.

Eigentlich sollte das neutronenreiche Magnesium-Isotop 32Mg, dessen Kern aus 20 Neutronen und 12 Protonen besteht, magisch sein und damit eine sphärische Form aufweisen. Doch der niedrigste Energiezustand im Magnesium-32 ist nicht kugelförmig sondern deformiert. Der Kern hat eher die Form eines American Footballs. Die sphärische Konfiguration sollte erst bei hohen Anregungsenergien entstehen.

Erstmals konnten nun die Forscher die Existenz eines kugelförmigen Magnesium-32-Kerns nachweisen. Doch die Herstellung des kugelförmigen Magnesium-32-Kerns gelang schon bei viel niedrigerer Energie als theoretisch vorhergesagt. Damit stellt dieses Ergebnis die theoretischen Modelle zur Beschreibung der Veränderung der Schalenstruktur in dieser und anderen Regionen der Nuklidkarte teilweise wieder infrage.

"Die Freude war groß, dass es uns endlich gelungen ist, auch die sphärische Form des Magnesium-32-Kerns nachweisen zu können," sagt Professor Krücken, Inhaber des Lehrstuhls für Physik der Hadronen und Kerne an der TU München. "Doch diese Erkenntnisse stellen uns Physiker auch gleich wieder vor neue Herausforderungen. Um den genauen Verlauf der Elementsynthese in Sternexplosionen vorherzusagen, müssen wir den Mechanismus genauer verstehen, der die veränderte Schalenstruktur herbeiführt." Die Wissenschaftler gehen davon aus, dass es noch vieler weiterer Experimente bedarf, um die Abläufe rund um die mysteriösen Inseln der Inversion und neue magische Zahlen widerspruchsfrei beschreiben zu können.

Die Arbeiten wurden unterstützt aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF), der Deutschen Forschungsgemeinschaft (DFG), insbesondere dem Exzellenzcluster Origin and Structure oft he Universe, der Europäischen Gemeinschaft, dem Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), dem Helmholtz International Center for FAIR (Facility for Antiproton and Ion Research) sowie des US Department of Energy (US-DOE).


Zusatzinformationen:

K. Wimmer, T. Kröll, R. Krücken, V. Bildstein, R. Gernhäuser, B. Bastin, N. Bree, J. Diriken, P. Van Duppen, M. Huyse, N. Patronis, P. Vermaelen, D. Voulot, J. Van de Walle, F. Wenander, L. M. Fraile, R. Chapman, B. Hadinia, R. Orlandi, J. F. Smith, R. Lutter, P. G. Thirolf, M. Labiche, A. Blazhev, M. Kalkühler, P. Reiter, M. Seidlitz, N. Warr, A. O. Macchiavelli, H. B. Jeppesen, E. Fiori, G. Georgiev, G. Schrieder, S. Das Gupta, G. Lo Bianco, S. Nardelli, J. Butterworth, J. Johansen, and K. Riisager:
Discovery of the Shape Coexisting 0+ State in 32Mg by a Two Neutron Transfer Reaction.
In: Physical Review Letters; 105, 252501, 13. Dezember 2010, DOI 10.1103/PhysRevLett.105.252501

Quelle: Technische Universität München, TUM

 


Aktualisiert am 04.02.2011.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren