Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Eine neue Stoffklasse: Borosulfate

Augsburger und Freiburger Festkörperchemiker stellen mit dem von ihnen entdeckten Kaliumborosulfat eine neue Art von Verbindungen mit hervorragend maßschneiderbaren Eigenschaften vor.




Abbildung - Veranschaulichung der Kristallstruktur des Kaliumborosulfats: graue Kugeln repräsentieren Kalium, blaue Tetraeder Borat und gelbe Tetraeder Sulfat. [Grafik: H. Höppe]
Kaliumborosulfat

Augsburg/HH/KPP - Mit dem Stoff Kaliumborosulfat haben Augsburger Festkörperchemiker gemeinsam mit Kollegen der Universität Freiburg in der renommierten Fachzeitschrift "Angewandte Chemie" das erste Beispiel einer von ihnen entdeckten völlig neuen Materialklasse vorgestellt.

"Diese neue Materialklasse hat das Potential, eventuell sogar giftiges Quecksilber in Energiesparlampen überflüssig zu machen", so Prof. Dr. Henning Höppe, der Leiter der Forschungsgruppe, der vor knapp zwei Jahren von der Universität Freiburg als Professor für Festkörperchemie/Materialwissenschaften ans Institut für Physik der Universität Augsburg gewechselt ist.

"Die Darstellung des Kaliumborosulfats gelang uns durch eine spezielle Reaktion von Borsäure, Schwefelsäure und Kaliumsulfat - dreier Chemikalien also, die allesamt großtechnisch verfügbar sind", erläutert Höppe. Die wissenschaftliche Bedeutung der Entdeckung liege in der ungewöhnlichen Kombination. Borosulfate bestehen nämlich aus unterschiedlich geladenen Baueinheiten mit recht unterschiedlichen chemischen Eigenschaften.

 

Ähnliche Strukturen wie Silicate

Strukturell ähneln die neuen Verbindungen den Tausenden natürlich vorkommender Silicate, bei denen aber im Gegensatz zu den Borosulfaten alle Bausteine gleich sind. Silicate - Gesteine also - haben einen Anteil von über 90 Prozent an der Erdrinde und kommen in vielfältigsten Strukturen vor. Zu ihnen gehören so unterschiedliche Stoffe wie Quarz mit dreidimensional vernetzte Baueinheiten oder Glimmer mit schichtartig zweidimensional vernetzte Baueinheiten oder Orthosilicate, in denen isolierte Baueinheiten vorliegen.

 

Hervorragend für technische Nutzungen maßzuschneidern

Höppe und seine Kollegen gehen nun davon aus, mit den Borosulfaten eine Strukturfamilie begründet zu haben, die mindestens ebenso groß ist wie diejenige der Silicate. "Wir erwarten darüber hinaus", so Höppe, "dass sich die Eigenschaften der Borosulfate aufgrund ihrer chemisch unterschiedlichen Bausteine im Sinne ihrer technischen Nutzbarkeit noch besser maßschneidern lassen werden als diejenigen der Silicate."

 

Potential für quecksilberfreie Leuchtstoffe

Die Entdeckung der Borosulfate entspringt reiner Grundlagenforschung. Gleichwohl liegen nach Einschätzung der Arbeitsgruppe künftige Anwendungsmöglichkeiten der neuen Materialklasse aber insbesondere in der Katalyse als Festkörpersäure und bei Leuchtstoffen. Bei solchen katalysierten Prozessen entstehen unzählige Stoffe des Alltags wie Kunststoffe, Wirkstoffe in Medikamenten oder Treibstoffe. Aus der Verbindung von Borosulfaten mit Seltenerdmetallen könnten sich nach Höppes Überzeugung u. U. etwa neuartige Leuchtstoffe entwickeln lassen, die den Einsatz von giftigem Quecksilber überflüssig machen, ohne das konventionelle Leuchtstoffe in Energiesparlampen und Leuchtstoffröhren keine Leuchtkraft entwickeln können.


Zusatzinformationen:

Prof. Dr. Henning A. Höppe, Dr. Karolina Kazmierczak, Dipl.-Chem. Michael Daub, M. Sc. Katharina Förg, Franziska Fuchs, Prof. Dr. Harald Hillebrecht:
Das erste Borosulfat K5[B(SO4)4]..
In: Angewandte Chemie; online veröffentlicht am 08. Mai 2012, DOI 10.1002/ange.201109237

Quelle: Universität Augsburg

 


Aktualisiert am 20.06.2012.



© 1996 - 2019 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren