Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Gesteuerte Ferromagnete

Chemie steuert Magnetismus: Wissenschaftlern ist es gelungen, die magnetischen Eigenschaften von Ferromagneten zu steuern.




Abbildung: Mit der Ein- und Auslagerung von Lithium-Ionen in bestimmte Magneten lässt sich deren Magnetstärke gezielt steuern. [Bildquelle, Grafik: KIT/Wiley-VCH]
Chemie steuert Magnetismus

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich.

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch Strom ein Magnetfeld erzeugt, jedoch verbraucht sie durchgehend Energie. Eine andere Möglichkeit ist, einen Ferromagneten zu polarisieren, also die magnetischen Strukturen in dem Material parallel auszurichten, so dass ein Gesamt-Magnetfeld entsteht. Dies benötigt zwar zum Halten des Magnetfeldes keine Energie, es ist jedoch permanent und lässt sich nur mit Aufwand aufheben. Eine andere Option ist die magnetoelektrische Kopplung, bei der ein elektrisches Feld Magnetismus induziert. Allerdings greift diese Methode häufig nur an der obersten Atomschicht des Kristallgitters, die Änderung des Magnetfeldes ist also minimal.

Das nun am KIT entwickelte chemische Verfahren zur Kontrolle des Magnetismus bietet einen neuen Ansatz, der über die zuvor beschriebenen Konzepte hinausgeht: Der Vorgang beeinflusst das gesamte Material, nicht nur die Oberfläche, und ist dabei reversibel, kann also rückgängig gemacht werden. Zusätzlich - und das ist die wichtigste Innovation dieses Verfahrens - ist der jeweilige magnetische Zustand des Materials (magnetisch / nicht magnetisch) nicht volatil. Das heißt, der Zustand bleibt, im Gegensatz zu einer elektromagnetischen Spule, auch ohne Stromzufuhr und damit ohne kontinuierlichen Energieverbrauch aufrechterhalten.

"Tausendfache Lade- und Entladezyklen von Lithium-Ionen Akkus, wie sie etwa in Handys genutzt werden, zeigen, dass elektrochemische Vorgänge durchaus reversibel sein können. Dies brachte uns auf die Idee, ähnliche Strukturen wie Lithium-Ionen-Akkus zu erforschen", sagt Subho Dasgupta vom Institut für Nanotechnologie des KIT. Beim Laden und Entladen eines Lithium-Ionen Akkus wandern die Ionen jeweils vom einen zum anderen Akku-Pol und lagern sich dabei in die Elektroden ein.

Die Wissenschaftler um Dasgupta haben nun einen Lithium-Ionen-Akku erstellt, bei dem eine Elektrode aus Maghemit, einem ferromagnetischen Eisenoxid (gamma-Fe2O3), besteht und die andere aus reinem Lithium. Experimente zeigten, dass die Lithium-Ionen-Einlagerung in Maghemit dessen Magnetstärke reduziert, auch bei Raumtemperatur. Durch die gezielte Steuerung der Lithium-Ionen, also durch Laden und Entladen des Akkus, lässt sich somit die Magnetfeldstärke des Maghemits kontrollieren. Dieser Effekt ist, genau wie bei normalen Lithium-Ionen-Akkus, wiederholbar.

Bei den vorgestellten Versuchen erreichten die Forscher eine Änderung der Magnetstärke um bis zu 30 Prozent. Das langfristige Ziel ist jedoch, den Magneten komplett an- und ausschalten zu können. Damit hoffen die Wissenschaftler ein Verfahren zu finden, mit dem sich ein Magnetschalter realisieren lässt, der vom Prinzip her wie ein elektrischer Transistor funktioniert: Während ein elektrischer Transistor mit einem Steuerstrom einen kontrollierten Stromkreislauf an- oder ausschaltet, schaltet der Magnetschalter mit dem Steuerstrom einen Ferromagneten an oder aus.

Das Verfahren kann prinzipiell alle Anwendungen ersetzen, in denen niederfrequente Elektromagneten zum Einsatz kommen und ist dabei deutlich energieeffizienter. Die Wissenschaftler des KIT haben mit ihrer Forschung vor allem winzige magnetische Schalter im Blick, die etwa bei (Mikro-) Robotern oder in der Mikrofluidik Anwendung finden.

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.


Zusatzinformationen:

Subho Dasgupta, Bijoy Das, Michael Knapp, Richard. A. Brand, Helmut Ehrenberg, Robert Kruk, Horst Hahn:
Intercalation-Driven Reversible Control of Magnetism in Bulk Ferromagnets.
In: Advanced Materials; online erschienen am 03. März 2015, DOI 10.1002/adma.201305932

Quelle: Karlsruher Institut für Technologie, KIT

 


Aktualisiert am 12.10.2015.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren