Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Kupfer als Leuchtstoff für OLEDs

Der Einsatz eines Kupfer(I)-Komplex als Leuchtstoff ermöglicht kostengünstige und umweltverträgliche organische Leuchtdioden (OLEDs). Dabei sorgt die thermisch aktivierte verzögerte Fluoreszenz (TADF) für eine hohe Lichtausbeute.




Abbildung: Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert. [Bildquelle: KIT]
Leuchtende Farbstoffe für OLEDs

Wissenschaftler des Karlsruher Instituts für Technologie (KIT), der CYNORA GmbH und der Universität Saint Andrews haben das zugrundeliegende quantenmechanische Phänomen des Intersystem Crossing in einem Kupferkomplex gemessen. Die Ergebnisse der Grundlagenarbeit, welche die Forscher in der Zeitschrift Science Advances vorstellten [siehe Literatur-Hinweis unten], tragen zu energieeffizienteren OLEDs bei.

Organische Leuchtdioden gelten als Lichtquelle der Zukunft. Sie geben Licht gleichmäßig in alle Betrachtungsrichtungen ab, liefern brillante Farben und hohe Kontraste. Da OLEDs (Organic Light Emitting Diodes) sich auch transparent und flexibel herstellen lassen, eröffnen sie neue Anwendungs- und Gestaltungsmöglichkeiten, wie flächige Lichtquellen auf Fensterscheiben oder rollbare Displays. OLEDs bestehen aus ultradünnen Schichten organischer Materialien, die als Emitter dienen, zwischen zwei Elektroden. Beim Anlegen einer Spannung werden Elektronen von der Kathode sowie Löcher (positive Ladungen) von der Anode in den Emitter injiziert. Dort treffen Elektronen und Löcher zu gebundenen Elektronen-Loch-Paaren zusammen. Bei diesen sogenannten Exzitonen handelt es sich um Quasiteilchen im angeregten Zustand. Sie zerfallen anschließend in ihren Ausgangszustand und geben dabei Energie frei.

Allerdings können die Exzitonen zwei verschiedene Zustände annehmen: Singulett-Exzitonen zerfallen sofort wieder und senden Licht aus, während Triplett-Exzitonen ihre Energie als Wärme freigeben. In OLEDs treten gewöhnlich 25 Prozents Singuletts und 75 Prozent Tripletts auf. Um die Energieeffizienz einer OLED zu erhöhen, müssen auch die Triplett-Exzitonen zur Lichterzeugung genutzt werden. Dies geschieht in herkömmlichen organischen Leuchtdioden durch die Beimischung von Schwermetallen wie Iridium oder Platin, die teuer und nur begrenzt verfügbar sind sowie aufwendige Herstellungsverfahren bedingen.

Eine kostengünstigere und umweltverträglichere Möglichkeit besteht im Einsatz von Kupferkomplexen als Emittermaterialien. Dabei sorgt thermisch aktivierte verzögerte Fluoreszenz (TADF - Thermally Activated Delayed Fluorescence) für hohe Lichtausbeute und damit hohe Effizienz: Triplett-Exzitonen werden in Singlet-Exzitonen verwandelt, die wiederum Photonen aussenden. TADF beruht auf dem quantenmechanischen Phänomen des Intersystem Crossing (ISC), einem Übergang von einem elektronischen Anregungszustand in einen anderen mit veränderterer Multiplizität, beispielsweise vom Singulett zum Triplett und umgekehrt. Bei organischen Molekülen bestimmend ist dabei die Spin-Bahn-Kopplung, das heißt die Wechselwirkung des Bahndrehimpulses eines Elektrons in einem Atom mit dem Spin des Elektrons. So lassen sich alle Exzitonen, Tripletts wie Singuletts, zur Lichterzeugung nutzen. Kupfer als Leuchtstoff erreicht mit TADF eine Effizienz von 100 Prozent.

Stefan Bräse und Larissa Bergmann vom Institut für Organische Chemie (IOC) des KIT haben nun gemeinsam mit Forschern des OLED-Technologie-Unternehmens CYNORA und der Universität Saint Andrews in Groß-Britannien erstmals die Geschwindigkeit des Intersystem Crossing in einem hoch lumineszierenden Kupfer(I)-Komplex in festem Zustand mit thermisch aktivierter verzögerter Fluoreszenz gemessen. Über die Ergebnisse berichten sie im Magazin Science Advances. Als Zeitkonstante für das Intersystem Crossing von Singulett zu Triplett ermittelten die Wissenschaftler 27 Pikosekunden (27 billionstel Sekunden). Der umgekehrte Vorgang - Reverse Intersystem Crossing - von Triplet zu Singulett geht langsamer vonstatten und führt zu einer TADF, die durchschnittlich 11,5 Mikrosekunden anhält. Diese Messungen führen zu einem besseren Verständnis der Mechanismen, die zu TADF führen, und erleichtern damit die gezielte Entwicklung von TADF-Materialien für energieeffiziente OLEDs.

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.


Zusatzinformationen:

Larissa Bergmann, Gordon J. Hedley, Thomas Baumann, Stefan Bräse und Ifor D. W. Samuel:
Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state.
In: Science Advances; online erschienen am 01. Januar 2016, DOI 10.1126/sciadv.1500889

Quelle: Karlsruher Institut für Technologie, KIT

 


Aktualisiert am 07.01.2016.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren