[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]


Home


Weitere Infos:

Photosynthese

Biophysikalische Chemie

Theoretische Chemie



Aktuelles

Mehr Chemie Nachrichten

Neueste Forschungsartikel

Stellenmarkt Chemie


Chemie A bis Z

Index Chemie

Chemikalien

Internetchemie Lexikon

Produkte und Firmen


About Internetchemie

Internetchemie

Impressum


English News



Publiziert am 20.08.2009 Infos zum Internetchemie RSS News Feed

Wie schützen sich Pflanzen vor Sonnenbrand?


 
Forscher klären Energiemechanismen im Blatt auf und berichten über ihre Ergebnisse in einem offenen Artikel in PNAS.

TU Braunschweig: Nicht nur die meisten Menschen - auch Pflanzen müssen sich vor zu starker Sonnenstrahlung schützen. Sie nutzen das Sonnenlicht, um chemisch gespeicherte Energie herzustellen (Fotosynthese). Ihr Reaktionszentrum arbeitet so effizient, dass jedes "Zuviel" an Sonne das System zum Durchbrennen bringen würde. Wie sich Pflanzen davor schützen, hat jetzt das Team um Prof. Peter Jomo Walla am Institut für Theoretische und Physikalische Chemie der Technischen Universität Braunschweig erforscht. Sein Fernziel ist es, die raffinierten Mechanismen unter anderem für Fotovoltaik-Systeme nutzbar zu machen.

Im sogenannten Reaktionszentrum der Pflanze schafft die Natur Erstaunliches. Es speist sich von dem Licht, das viele Hundert Chlorophyllmoleküle, der grüne Farbstoff der Blätter, gesammelt haben. Jedes Lichtquant oder Photon - die kleinste Einheit, in der Licht vorkommen kann - wird zu fast 100 Prozent für eine elektrische Ladungstrennung eingesetzt. Diese primär elektrische Energie wird dann verwendet, um alle weiteren biologischen Prozesse anzutreiben.


Chlorophyll-Karotinoid-Wechselwirkung

Ein genau abgestimmtes Wechselspiel der Energieflüsse zwischen Chlorophyll- und Karotinoid-Molekülen erlaubt es dem Fotosynthese-Apparat, fast jedes Lichtquantum für Elektronentransfers zu verwenden und deren Energie für die Erzeugung biochemisch gespeicherter Energie zu nutzen. Tritt zu viel Solarenergie auf, sorgt innerhalb von Sekunden eine molekulare Liaison zwischen diesen Pigmenten dafür, dass die gefährliche Überschussenergie abgeführt wird. Das Bild veranschaulicht, wie sich ein Chlorophyll- (oben) und ein Karotinoidmolekül (unten) vorübergehend quantenmechanisch vereinigen und gemeinsam überschüssige Energie ableiten, damit nicht zuviel davon das Reaktionszentrum erreicht.

[Bildquelle: Hartmut Sebesse / TU Braunschweig]

Ein Sicherheitsschalter für die grüne Energiefabrik

Dies alles geschieht in der Regel unter moderaten Lichtbedingungen. In der Natur kann allerdings die Sonneneinstrahlung innerhalb von Sekunden tausend Mal stärker werden, wenn etwa Wolken aufbrechen oder ein Schattenspender verschwindet. Entsprechend müsste im Reaktionszentrum dann tausendmal mehr Energie umgesetzt werden. "Das ist, als wenn ein Automotor plötzlich statt dreitausend drei Millionen Umdrehungen leisten müsste", erläutert Prof. Peter Jomo Walla, "Kein Apparat hält das unbeschadet aus." Schlagartig muss also die Pflanze umschalten und überschüssige Energie irgendwie loswerden können. Tatsächlich kann man die aktuelle "Fitness" jeder Pflanze leicht daran erkennen, wie schnell und effektiv sie ihre Energieflüsse regeln kann.

Wie dies aber im Detail geschieht, war über Jahrzehnte unbekannt und Gegenstand intensiver Forschung. Der Arbeitsgruppe von Prof. Walla ist nun ein sehr wichtiger Schritt zur Aufklärung dieser Prozesse gelungen.


Ultraschnelle Reaktionen und Quantenmechanik in der Pflanze

Sobald die Sonne ein Blatt zu stark bestrahlt, verbindet sich das grüne Chlorophyll sekundenschnell mit orangefarbenen Karotinoid-Blattpigmenten, allerdings nicht chemisch sondern elektronisch. Durch quantenmechanische "Tricks" verhalten sich die beiden Moleküle dann zusammen wie ein einzelnes Molekül. Jedes Molekül erhält nun etwas von den Eigenschaften des anderen Moleküls. Während der grüne Farbstoff die Lichtenergie normalerweise kurzfristig elektronisch speichert, erzeugen Karotinoid-Moleküle daraus sehr schnell Wärme. Durch das "Mischen" dieser Karotinoideigenschaft mit dem Chlorophyll wird die überschüssige Energie daher sofort gefahrlos in Wärme umgewandelt. Bei sinkender Lichtintensität geben die beiden Moleküle ihre Liaison sofort wieder auf, und die Chlorophyllmoleküle versorgen das Reaktionszentrum wie üblich mit Energie.

Diese Prozesse finden in unvorstellbar kurzer Zeit statt, nämlich innerhalb weniger Femtosekunden - Billionstel von millionstel Sekunden. Zum Vergleich: Nichts ist schneller als Licht, und trotzdem braucht es schon über 100 Femtosekunden, um nur die Strecke zurückzulegen, die dem Durchmesser eines menschlichen Haares entspricht.


Laserblick ins Innere der lebenden Pflanze

"Erst seit der Erfindung der Ultrakurzzeitlaser ist es möglich, diese extrem schnellen und dabei elementaren Schritte überhaupt zu beobachten", erläutert Prof. Walla. Seine Arbeitsgruppe verfügt über mehrere Ultrakurzzeitlaser, die Lichtblitze von nur wenigen Femtosekunden Dauer erzeugen, um mit ihnen dann die ultraschnellen Prozesse in der Fotosynthese abtasten zu können. Durch eine spezielle Modifikation der Ultrakurzzeitlaser ist es ihr gelungen, sogar in lebenden Pflanzen während dieser Regulation direkt nachzuweisen, wie die grün-orangefarbene Gemeinschaftsaktion funktioniert.


Nutzen für Fotovoltaik und Pflanzenzüchtung

"Wir erhalten damit Erkenntnisse, die zum Beispiel für die Züchtung von Nutzpflanzen wichtig sein können, die auch unter extremen Klimabedingungen wie in Ländern der Dritten Welt ertragreich sind," so Walla. "Ein mittelfristiges Ziel unserer Forschung ist die Entwicklung künstlicher Fotosynthese- und neuartiger Fotovoltaik-Systeme zum Beispiel mit speziellen Nanopartikeln. Diese verhalten sich ähnlich wie die Chlorophylle oder Karotinoide, sind aber dafür wesentlich stabiler." Erste Modellsysteme, deren Effizienz ähnlich wie in der Natur von der Schnelligkeit der Energieumwandlungsprozesse abhängt, werden bereits an der TU Braunschweig entwickelt und mit den Ultrakurzzeitlasern untersucht.


 

Quellen und Artikel:

-

Open Access Article:
Stefan Bode, Claudia C. Quentmeier, Pen-Nan Liao, Nour Hafi, Tiago Barros, Laura Wilk, Florian Bittner, and Peter J. Walla:
On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls.
In: Proceedings of the National Academy of Sciences; PNAS 2009 106:12311-12316; published online before print July 15, 2009
DOI: 10.1073/pnas.0903536106
URL: direct link

-

Biophysikalische Chemie, Arbeitsgruppe Prof. Dr. Peter Jomo Walla

-

Quelle: Technische Universität Carolo-Wilhelmina zu Braunschweig

 

Weitere Informationen:

-

... zum Thema (Hintergrundinformationen, Forschungsartikel etc.): Siehe Menüleiste oben links

-

Ihre Pressemitteilung veröffentlichen ...




 


Suche nach themenverwandten Internetseiten:


Information nicht gefunden?
Versuchen Sie es hier!


Benutzerdefinierte Suche


Internetchemie © 2007 - 2009 A. J.; aktualisiert am 29.09.2009